钠离子电池层状氧化物正极材料的表界面修饰改性及其产气抑制效应 |
Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect |
作者 | 单位 | E-mail | 朱晓天 | 苏州大学能源学院, 能源与材料创新研究院, 苏州 215006 | | 黄方鼎 | 苏州大学能源学院, 能源与材料创新研究院, 苏州 215006 | | 朱文昌 | 苏州大学功能纳米与软物质研究院, 苏州 215123 | wczhu@suda.edu.cn | 赵建庆 | 苏州大学能源学院, 能源与材料创新研究院, 苏州 215006 苏州大学, 江苏省先进负碳技术重点实验室, 苏州 215123 江苏众钠能源科技有限公司, 苏州 215163 | jqzhao@suda.edu.cn |
|
摘要: 基于原子层沉积技术(ALD)制备TiO2和Al2O3纳米层并结合高温热处理优化工艺,研究了异质氧化物双层表面包覆和晶格内双阳离子梯度掺杂的2种表界面修饰法对NaNi1/3Fe1/3Mn1/3O2(NFM)正极材料电化学储钠性能和热稳定性的提升作用,以及其产气抑制效应。结果表明,在2.0~4.0 V (vs Na/Na+)工作电压和1C (120 mA·g-1)电流密度下,当容量达到第2次循环容量的60%时,经表面包覆的NFM@TiO2(10)@Al2O3(10)和表层晶格掺杂的NFM#Ti (35)#Al (10)正极材料(括号中数字对应ALD沉积的次数)分别能够循环319和358次,显著优于未修饰NFM材料(250次),同时通过差示扫描量热法(DSC)测得的热失控温度分别提升了6.1和9.7℃。原位差分电化学质谱(DEMS)测试表明,表面包覆显著抑制了H2等主要气体成分的形成,而晶格掺杂避免了电解液的二次分解,这可能是由于电解液质子化和高电压下氧化分解等有害副反应的减少。 |
关键词: NaNi1/3Fe1/3Mn1/3O2 原子层沉积 TiO2@Al2O3双层包覆 双阳离子共掺杂 原位产气机理 原位差分电化学质谱 |
基金项目: 江苏省基础研究计划自然科学基金面上项目(No.BK20221238)资助。 |
Abstract: Two surface and interface engineering strategies were developed, i.e., the TiO2@Al2O3 oxide dual coating in a heterostructure and binary Ti#Al based cation co-doping in a gradient surface enrichment to modify NaNi1/3Fe1/3Mn1/3O2 (NFM) cathode material using atomic layered deposition (ALD) and high-temperature annealing runaway temperatures to 285.9 and 289.5 ℃ on the fully-charged condition respectively, corresponding to the increment of 6.1 and 9.7 ℃ compared to the NFM via differential scanning calorimetric (DSC) measurements. In-situ differential electrochemical mass spectrometry (DEMS) was further employed to analyze gas components and corresponding contents in the first two cycles of three different cathodes. As a result, the surface coating benefits from restricting the generation of major H2 components by effectively suppressing the protonation of the electrolyte solvents. By contrast, the lattice doping works for impeding the follow-up reactions of decomposed products from the initial decomposition of electrolytes. process, and their effects on improving electrochemical performance and thermal stability of the NFM cathode, and suppressing gas generation during its sodiation/desodiation were also evaluated. When the capacity reached 60% of the capacity of the second cycle in a voltage range of 2.0-4.0 V (vs Na/Na+) at a high current density of 1C (120 mA· g-1), the surface-coated NFM@TiO2(10)@Al2O3(10) and lattice-doped NFM#Ti(35)#Al(10) cathodes (the number in parentheses responds to the cycles for ALD deposition) could maintain 319 and 358 cycles, respectively, more than that of the unmodified NFM cathode (250 cycles). Moreover, two modified cathodes also underwent their thermal runaway temperatures to 285.9 and 289.5 ℃ on the fully-charged condition respectively, corresponding to the increment of 6.1 and 9.7 ℃ compared to the NFM via differential scanning calorimetric (DSC) measurements. In-situ differential electrochemical mass spectrometry (DEMS) was further employed to analyze gas components and corresponding contents in the first two cycles of three different cathodes. As a result, the surface coating benefits from restricting the generation of major H2 components by effectively suppressing the protonation of the electrolyte solvents.By contrast, the lattice doping works for impeding the follow-up reactions of decomposed products from the initial decomposition of electrolytes. |
Keywords: NaNi1/3Fe1/3Mn1/3O2 atomic layered deposition TiO2@Al2O3 dual coating binary cation co-doping in-situ gas generation mechanism in-situ differential electrochemical mass spectrometry |
投稿时间:2024-07-08 修订日期:2024-11-11 |
摘要点击次数: 285 |
全文下载次数: 170 |
朱晓天,黄方鼎,朱文昌,赵建庆.钠离子电池层状氧化物正极材料的表界面修饰改性及其产气抑制效应[J].无机化学学报,2025,41(2):254-266. |
查看全文 查看/发表评论 下载PDF阅读器 |
Support information: 相关附件: 20240260_Supporting_Information-无机化学学报 (2).docx |
|
|
|